18 research outputs found

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    Distributed Dynamic Density Coverage for Human-Swarm Interactions

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ACC.2015.7170761This paper presents two approaches to externally influence a team of robots by means of time-varying density functions. These density functions represent rough references for where the robots should be located. Recently developed continuous-time algorithms move the robots so as to provide optimal coverage of a given the time-varying density functions. This makes it possible for a human operator to abstract away the number of robots and focus on the general behavior of the team of robots as a whole. Using a distributed approximation to this algorithm whereby the robots only need to access information from adjacent robots allows these algorithms to scale well with the number of robots. Simulations and robotic experiments show that the desired behaviors are achieved

    Correct-by-Construction Control Synthesis for Multi-Robot Mixing

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/CDC.2015.7402112This paper considers the problem of controlling a team of heterogeneous agents to conform to high- level interaction (coordination, sensing, and communication) missions. We consider interactions that can be specified via symbolic inputs from the braid group. We define a novel specification language, called Braid Temporal Logic (BTL), that allows us to specify rich, temporally-layered tasks involving agents’ locations in an environment, their relative positions to each other, and frequency of location swaps and information exchanges between agents. We use techniques from formal methods to generate symbolic inputs that conform to a given BTL specification and use recently developed hybrid optimal control synthesis techniques to enact the synthesized pattern. The generated trajectories are provably guaranteed to be collision-free, respect physical boundaries of the agents’ mission space, and to satisfy the high-level mission. Results are validated via implementation on a team of wheeled robots

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees

    Interactions in multi-robot systems

    Get PDF
    The objective of this research is to develop a framework for multi-robot coordination and control with emphasis on human-swarm and inter-agent interactions. We focus on two problems: in the first we address how to enable a single human operator to externally influence large teams of robots. By directly imposing density functions on the environment, the user is able to abstract away the size of the swarm and manipulate it as a whole, e.g., to achieve specified geometric configurations, or to maneuver it around. In order to pursue this approach, contributions are made to the problem of coverage of time-varying density functions. In the second problem, we address the characterization of inter-agent interactions and enforcement of desired interaction patterns in a provably safe (i.e., collision free) manner, e.g., for achieving rich motion patterns in a shared space, or for mixing of sensor information. We use elements of the braid group, which allows us to symbolically characterize classes of interaction patterns. We further construct a new specification language that allows us to provide rich, temporally-layered specifications to the multi-robot mixing framework, and present algorithms that significantly reduce the search space of specification-satisfying symbols with exactness guarantees. We also synthesize provably safe controllers that generate and track trajectories to satisfy these symbolic inputs. These controllers allow us to find bounds on the amount of safe interactions that can be achieved in a given bounded domain.Ph.D
    corecore